
Adaptive Huffman Coding:

Analysis and Applications

Jiaxin Li Benhao Huang Dingyao Tao

May 2022

Abstract

We start with the Bad Wine problem from the textbook and illustrate the role of

Adaptive Huffman coding by raising a new scenario "Bad Wine Pipeline". Then we

describe the process of implementing Adaptive Huffman coding.

In the next section, we analyze the performance of Adaptive Huffman Code in the

view of a encode method. In our experiment, we test the compress rate, encode time

and decode time in python. After analyze the result, we can conclude that the best

interval of the size of message is [27, 212].

Then we focus our attention on its learning velocity and its adaptability. We define

a series of reasonable and intuitive metrics to measure its learning velocity and analyze

its learning velocity in the different distribution. Based on the above experiment result,

we propose the Adaptive Huffman Code with Buffer to improve its learning velocity.

Besides, our experiment verify its feasible.

Finally, we explore the application of Adaptive Huffman coding to the CBOW hier-

archical softmax method. We present a different viewpoint on the Incremental Method

approach proposed in existing papers and improve it with the Adaptive Huffman Tree,

which we call Partial Incremental with Adaptive Huffman(PIWA). Further experiments

show that our improvements outweight the incremental method both in final accuracy

and predicting time, while basically has the same training cost with it.

Keywords: Adaptive Huffman coding, Algorithm performance, Learning velocity,

Hierarchical softmax, Incremental learning

1 Introduction

Our research is inspired by a problem in Cover’s textbook[1] (see page 153).

Example 1 (Bad wine). One is given six bottles of wine. It is known that precisely one bottle has

gone bad (tastes terrible). From inspection of the bottles it is determined that the probability pi that

the ith bottle is bad is given by (p1, p2, . . . , p6) = (8
23 , 6

23 , 4
23 , 2

23 , 2
23 , 1

23). Tasting will determine the

bad wine. You can mix some of the wines in a fresh glass and sample the mixture. You proceed,

mixing and tasting, stopping when the bad bottle has been determined. What is the minimum

expected number of tastings required to determine the bad wine?

As known well, this problem can be solved using Huffman code. Here we render the

corresponding Huffman tree as solution and give no more elaboration here.

1

14
23

p1 p2

9
23

p3 5
23

p4 3
23

p5 p6

Figure 1: Huffman Tree of Example 2.

However, this easy case is what we call "still". What if the probability of a certain wine

is bad could be dynamically changing through the time? What if the number of the type

of wines is not fixed as 6 in example 2 and can be increasing by the time?

In order to give a more intuitive feeling, we come up with the following new application

scenario, we call it "Bad Wine Pipeline".

Example 2 (Bad Wine Pipeline). There is a wine pipeline with four product lines, labeled A, B,

C, and D. The probability of bad wine being produced is unknown for each line. At the end of the

pipeline, a robot checks the quality of the wine to determine if any of it is bad.

1)You are tasked with developing a strategy that enables the robot to efficiently find bad wine with

minimum average checks. The robot is able to mix some wines and check them together. Note that

there is a feedback loop; when the robot discovers bad wine from a certain line, the corresponding

probability will be updated. Therefore, your strategy should be able to cope with dynamic changes.

2)Your boss wants to expand the business by adding new lines, such as E, F, G, and so on. Does

your strategy still work in this case?

1

Figure 2: Bad Wine Pipeline

Naive Huffman coding won’t work in this scenario. Intuitively, we have to make the cod-

ing changing in the procedure, this is what Adaptive Huffman coding (also called Dynamic

Huffman coding) do.

Adaptive Huffman coding[2] permits building the code during the transmission of the

symbols, where we might have no initial knowledge of source distribution. Thus, it can be

used to develop one-pass1 algorithms for file compression, which can be useful in situations

where there is limited memory or processing power available. [3]

2 Adaptive Huffman Code

2.1 Basic Process

The best way to learn an algorithm is to follow it step by step. Before we demonstrate how

it works, there are some definitions should be made clear.

Definition 1. NYT node stands for ’Not Yet Transmitted’. In the building procedure of an adaptive

Huffman tree, it serves as auxiliary node. In data compression and transmission procedure, it’s an

escape code. When a symbol not yet contained in the coding tree needs to be encoded, the code of

NYT is first output, followed by the symbol’s original expression specified by the sender and the

receiver. When the decoder encounters a NYT, it knows that what follows is temporarily no longer a

Huffman encoding, but a primitive symbol that has never appeared in the encoded data stream.

Definition 2. The weight of a node is the number of times it appears, which is denoted by the

number in the bracket of the node.
1In computing, a one-pass algorithm or single-pass algorithm is a streaming algorithm which reads its

input exactly once.

2

Definition 3. Block: a group of nodes who have the same weight.

Definition 4. Node Number: The number of a node is up to the structure of Adaptive Huffman

Tree. Starting at 1, it increases from left to the right, bottom to the top.

Figure 3: the number of nodes

Definition 5. Sibling Property : In the process of constructing dynamic Hoffman coding trees, two

important principles need to be followed:

(1) The nodes with larger weight also have larger node numbers.

(2) The node number of the parent node is always larger than the node number of the child node.

Then we introduce the process of building and updating of a Adaptive Huffman Tree.

Initially, frequency(or probability) of various symbols is unknown. We specify that the

initial state has only one leaf node: NYT. Every time a symbol is inserted, we should keep

the sibling property while updating the weight. When trying to insert a symbol, based on

whether it is in the tree, we have different strategy. Particularly, If the symbol has been

encountered, then we should build a subtree correspondingly.

Figure 4: Insert a new symbol

The flow diagram demonstrates more details about the procedure is included in ap-

pendix 7.1.

3

3 Performance of Compression: Contrast

In order to research on the Adaptive Huffman code better, we analyze its performance in

many aspect in this section.

3.1 The performance of Adaptive Huffman vs the performance of adap-

tive arithmetic

When considering a data compression encoding method, several aspects should be consid-

ered:

Definition 6. Compression rate: This determines the minimum size of the data we can achieve from

the compression encoding method.

Definition 7. Encoding time: This refers to the time cost when encoding data.

Definition 8. Decoding time: This refers to the time cost when decoding the code.

Here’s the result:

compression rate encoding time decoding time

Figure 5: Visual comparisons of the Adaptive Huffman compression encoding models with
adaptive arithmetic compression encoding model.

3.2 Result Analyze and Conclusion

From the figure fig4, we can conclude that :

1. the compression rate is decrease with the increase of the size of message and finally

becomes stable.

2. the encoding time and decoding time "explode" after the size of message exceed the

threshold. s

4

3. After comprehensive analyzing the result, the Adaptive Huffman Code will get the

best performance in our experiment environment when the size of message is [27, 212].

4 Explore:"learning" convergence velocity

After analyze the conventional performance of Adaptive Huffman Code in the perspective

of a code method, we want to explore its special performance from its adaptability.

Learning from two algorithm , it is clear that Adaptive Huffman Code updates its Huff-

man Code Tree in the process of coding, in order to adapt to the change of probability

distribution. It is obviously that once the distribution changed or in the beginning of cod-

ing(Figure 6), the Huffman Code Tree is not optimal. If the Huffman Code Tree is able to

"learn" the optimal Huffman Code Tree rapidly, the length of encode will be shorter and

the compress ratio of this encode method will be better.

Therefore, it is significant that explore how to measure the "learning" velocity and what

to affect the "learning" velocity, how to improve the "learning" velocity.In the following

section, we will explore the "learning" velocity in this three aspect.

Figure 6: The compression ratio with the size of message

4.1 The Metrics of the "learning" velocity

Before we introduce the metrics of the "learning" velocity, let us analyze figure 6 formally:

we use the letter probability distribution of to generate the different length of text. This

figure demonstrate the relationship between compression ratio and the length of the text

to be encoded.

In this figure, we find that the compression ratio is decreasing with the increasing of

5

length of message and the decrease velocity become less and less.Therefore, we introduce

the definition of the convergence state.

Definition 9. the convergence state: when the length of message is doubled, the decrease of com-

pression ratio is less than 0.01 continuously.we define this state as the convergence state:

Then, we define a series of metrics to measure the convergence velocity (in other word,

the "learning" velocity).

Definition 10. Warm-up length:

Lwarm := log(Lminc) (1)

where Lminc :the minimum length of the message in the convergence state.

Definition 11. Launch efficiency: the compression ratio corresponding to the length of the input

message is short (25 letters) 2.

Definition 12. Valid compression ratio

Rv := 1− Rc (2)

where Rc is the compression ratio in the convergence state

Definition 13. Learning velocity:

vlearning :=
Rv

Lwarm
(3)

Warm-up length Launch efficiency Learning velocity

Figure 7: Visual comparisons of original models.

2Based on the fact that the too short message is unnecessary to use the Adaptive Huffman Code to code
whose the probability distribution of words we can get easily, we define the shortest message using Adaptive
Huffman Code to code is consist of 25 letters. In other words, we can easily use the first 25 letter in the
message to get the initial tree. It is one of the reason why the shortest length in the Figure 6 is 25

6

4.2 The Affect Factor: The probability distribution

It is universally acknowledged that the probability distribution make a big difference in

the average length of the code in Native Huffman Code. In this section, Aim to explore

the influence of probability distribution for the learning velocity, we using the following

probability distribution to measure the learning velocity:

• the continuous uniform distribution

• the discontinuous uniform distribution

• the normal distribution (σ = 26)

• the simulation distribution (the probability distribution in <>)

4.2.1 Experiment

Figure 8: The compression ratio with the size of message in different distribution

Table 1: The metrics of different probability distribution

distribution Lwarm/(byte) Rv/1 Elaunch/1 vlearning/log(byte)−1

continuous uniform 29 0.383 1.698 0.0425

discontinuous uniform 218 0.381 1.698 0.0477

simulation 212 0.384 1.074 0.0320

normal 28 0.384 1.2 0.0480

7

4.2.2 Analyze

Table 2 and Figure 9 demonstrate:

1. the Lwarm of normal distribution is shortest

2. The continuity of letter make a big difference on the Lwarm

3. The distribution does not make a big impact on the Rv

4. Compare to the other distribution, the simulation distribution has the least learning

velocity

5. the simulation distribution has the best Elaunch. The uniform distribution will make

the Elaunch very bad.

In summary, the distribution probability will affect the learning velocity: the continuity

will lengthen the Lwarm .Following a certain pattern range, the message will be learned

with Adaptive Huffman Code more easily.

4.3 Explore: Buffer sample

Base on the fact that if we can warm up the machine before using it, the performance of

it will be better. Therefore, we make a buffer for the Adaptive Huffman Code. When we

encode the message, we put the letter into the buffer firstly.Using the letter in buffer to

update our Huffman Tree, only when the buffer is full or at the end of the message, we

encode and output the letter in the buffer.

4.3.1 Method

In this section, we define our method formally:

In this method, although the buffer can warm up the Huffman Tree, we should deliver the

statistical frequency table to the decoder in order to update the Huffman Tree at the same

time which make it possible for the receiver to decode the code correctly.Therefore, we

introduce the definition of the warm up cost to measure the additional space consumption.

Definition 14. Warm Up Cost

Cwarm = log|M| × log|Sizebu f f er| ×
Lmessage

sizebu f f er
(4)

8

Algorithm 1 Algorithm of Apative with Buffer

Input: message ,buffersize
Output: deliver code to the decoder

1: while message.remain.size > 0 do
2: while Buffer.size <= BufferMaxSize and message.remain.size > 0 do
3: Buffer.Push(message.remain.pop())
4: Get the Statistical frequency table of the elements in buffer .
5: Deliver this table to the receiver.
6: Using this statistical frequency table to update the Huffman Tree in decoder and

encoder.
7: Using the updated Huffman Tree to encode the elements in buffer. And deliver the

code to the decoder.
8: end while
9: end while

where |M| is the number of categories of the element in message.

Definition 15. New Compression Ratio

R′c =
Lcode + cwarm

Lmessage
(5)

4.3.2 Experiment and Result

We equip the Huffman Code Tree with buffer whose size = 64. Compare with the Huffman

Code without buffer, we use it to encode different length of message generate from the

simulated possibility distribution and contrast their compression ratio and other metrics

about the convergence velocity.The result is as follow:

Figure 9: The compression ratio with the size of message

9

Table 2: The metrics of different probability distribution

distribution Lwarm/(byte) Rv/1 Elaunch/1 vlearning/log(byte)−1

with buffer 28 0.387 0.78 0.0483

without buffer 212 0.384 1.074 0.0320

4.3.3 Analyze

Compare with the Adaptive Huffman Code without buffer, the Adaptive Huffman Code

with buffer has the smaller Lwarm, has the better Elaunch, has higher learning velocity.Besides,

their Rv have similar resultant values, which is expected to be worse in the Adaptive Huff-

man code3.

In summary, we conclude that the Adaptive Huffman Code with buffer make a progress

in the learning velocity in our simulation case.

5 Partial Incremental: Application of ADA in CBOW Model

5.1 Backgound

CBOW (continuous bag of words)[4] is an frequently used neural network model for word

vector generation. It has multiple advantages over traditional matrix factory-based meth-

ods, while being short in its high requirement for storage and computation resources. To

overcome this shortcoming, the authors of CBOW later applied hierarchical softmax[5]

method to modify the model. Instead of evaluating W output nodes in the neural network

to obtain the probability distribution, it is needed to evaluate only about log2(W) nodes.

For clarity, we first illustrate the application of naive huffman tree behind it.

5.2 Biased Walk on Huffman Tree

Given a huffman tree, whose leaf nodes each representing a certain word w, the procedure

we get the target word from input xw can be deemed as a procedure of random walk on it.

Definition 16. lw: the number of nodes in pw

3The fact that this metrics is better is beyond our expectation. We make guess that the reason is the
definition of Rv in this paper is not very exactly. Maybe if we define threshold, it will be reasonable in this
comparison

10

Definition 17. pw: path from the root node to the leaf node corresponding to w

Definition 18. pw
1 , pw

2 , · · · , pw
lw : the lw th node in pw. Here pw

1 represents the root node, pw
lw

represents the node of word w.

Definition 19. dw
2 , dw

3 , · · · , dw
lw ∈ {0, 1}: the huffman code of word w. dw

j represents the code

represented by the jth node on pw, where root doesn’t stand for a code.

Definition 20. θw
1 , θw

2 , · · · , θw
lw−1 ∈ Rm: parameter vector corresponding to non-leaf nodes in the

path pw. Note that the theta of a node in the tree won’t varies between different word, which means

a node can only have one θ value. Here the w in θw only tell that its on path pw.

The hierarchical softmax works as follows: when inputting a value Xw calculated from

word w, we starting biased walking. When at node we stipulate that we have σ(θw
i Xw)

chance of going right, and corresponding 1− σ(θw
i Xw) chance of going left. Here σ

(
x⊤w θ

)
=

1
1+e−x⊤w θ

. We keep walking following probability until we reach a leaf node, and output the

corresponding word of the huffman code.

Figure 10: Example of biased walk on huffman tree

So given a word w and its huffman code, our goal is to find the proper θw
i to maximize

the probability that we walk to the leaf node of w. Therefore, the objective function could

be formulated as:

lw

∏
j=2

p
(

dw
j | xw, θw

j−1

)
=

lw

∏
j=2

{[
σ
(

x⊤w θw
j−1

)]1−dw
j ·

[
1− σ

(
x⊤w θw

j−1

)]dw
j
}

, (6)

which should be maximized after taking the logarithm during our training.

Proposition 1. The predicting time of the model is positively correlated with the height of the tree,

because larger the height, longer the path we should walk to get to the leaf node.

11

5.3 A Further Look into Incremental Learning

Although hierarchical softmax could save a lot computation resource, it’s still not enough.

For a certain dataset, the corresponding huffman tree is unique, which means every time

we have new data added into dataset, we have to retrain the model with whole When the

dataset becomes too large, the cost of building a huffman tree can not be ignored. Under

such circumstance, if we have already trained our model on a dataset, its expensive to

retrain the model on the whole updated dataset.

5.3.1 Previous Works

There are several recent works[6] [7] putting forward a method called "Incremental Huff-

man Tree" to solve the problem. The basic idea of incremental huffman tree is simple and

clear as demonstrated in the following pesudocode:

Algorithm 2 Incremental Huffman Tree

Input: previous Huffman Tree Tp , new dataset

Output: updated "Huffman Tree" Tu

1: for word in new dataset and not in previous Huffman Tree do

2: add word into new word set

3: end for

4: build a new Huffman Tree Tn on new word set

5: Merge: find the shortest path of Tp and make its leaf node ns the root of Tn

6: update the Huffman Code of leaf nodes in Tn by adding the code of ns as prefix

5.3.2 Problems We Found

Compared with reconstructing a new Huffman Tree, this method apparently saves a lot

computation resources. However, we thought there are some problems of such method

and make our own analysis.

Problem 1. The accuracy of the model will decrease with this training method.

if we find the shortest path of Tp and make its leaf node ns the root of Tn, then this node

just disappear, since the walk on the tree won’t stop until we reach the leaf node, which

means the internal nodes won’t be deemed as a word by the model! Moreover, since this

node is on the shortest path of original A possible solution could be add the node ns to

12

the new word set then reconstruct the new tree, but authors of these two papers did not

elaborate on this detail.

Figure 11: From M. Nilufar and A. Abhari’s paper[6], the red text explains our query

Problem 2. This method can’t really implement incremental learning.

When we refer to Incremental Learning, we usually hopes not to retrain on the whole

dataset again after updating. However, this incremental Huffman Tree method can not

actually achieve this effect. As we have pointed out in Definition 20, a certain node has

only one parameter vector θ, if we just training the model on new words without the old

words, then the parameter learned for old words will be ruined. Considering that both of

the papers [6] [7] give no open source code and are lack of results on the accuracy of the

model trained, we carry out the experiment on our own.

Figure 12: The accuracy changes during "Incremental Learning"

Here Incremental Data Accuracy is validated on each incremental dataset, and All Data

13

Accuracy refers to the accuracy on the whole dataset after finishing all training. We carry

out five experiments with epochs=10,50,100,200.

From figure (12) we observe that as training epoch increases, IDA basically falls in

roughly the same range, except for when epoch=10, which is obviously undertraining (at

incremental time 1). While ADA first increases and then drops, which means Incremental

Learning by this method has severe drawbacks. More experiments results is included in

appendix 7.4.

Problem 3. Incremental Huffman Tree’s code length could be very bad, as data set becoming very

large, which also means Incremental Huffman Tree has large height.

Intuitively, as merge times increases, this incremental huffman tree may become large

in height and finally have very large code length. We try to compare it with the optimal

huffman tree, given binary alphabet = {0, 1}.

Theorem. Huffman Code has minimum average code length L∗ for binary alphabet.

Proposition 2. The Incremental Method could make code length as bad as nL∗, here n = log w+ 1,

w is the number of dictinct words in the dataset before updating with new words.

Assume there are 2n−1 distinct words in the previous data with weight 1, and we add

a new word with weight m into the dataset, where m >> 2n−1. The optimal case with

Huffman Tree will produce a code with length n2n−1 + m, while the incremental method

gives us a code with length 2n−1 + nm.

Incremental Method Naive Huffman

Figure 13: Comparison between the code length of Huffman Tree and Incremental Huffman

Then the code length rate between two methods is :

α =
2n−1(n− 1) + nm

2n−1n + m
−→ n, with m→ ∞, (7)

14

which means it can consumes large storage to store the word code for some particular

dateset.

Therefore, we could claim that this training method cannot serve as Incremental Learn-

ing method, which means it still needs to retrain on the whole new dataset to obtain normal

accuracy. However, as we have pointed out in Problem 1 and 3, its accuracy could be ru-

ined and its code length could be extremely large, which harms training equality. Thus,

combined with Adaptive Huffman Tree we have explored above, we put forward a partial

incremental method.

5.4 Our Refinement: Partial Incremental With Adaptive Huffman Tree

Because of the special structure of hierarchical softmax, we could hardly realize Incremental

Learning only on the new words added, as we have exlained in problem ??. What we

could do is to optimize the reconstruction procedure of hierarchical softmax tree. We could

simply use Adaptive Huffman Tree to replace it,and ensure the minimum length of code

while saving the time cost of reconstructing a new Huffman Tree. Our algorithm for is

designed as follows:

Algorithm 3 PIWA:Partial Incremental With Adaptive Huffman

Input: previous Huffman Tree Tp , new dataset

Output: updated Huffman Tree Tu

1: for word in new dataset do

2: use Adaptive Huffman Tree algorithm to update the tree

3: end for

4: dataset← old dataset ∪ new dataset

5: Retrain the model on dataset

Then we carry out some experiment testing its accuracy, training time cost and predict-

ing time cost compared to Incremental Huffman methods. The dataset we use is included

in appendix. Limited by our time and computer performance, we set incremental times as

8 and batch size as 100 words, which means totally we have 800 words.

15

Figure 14: Contrast on Training and Predicting Time with Different Epochs

From figure 14, we find that the Adaptive Huffman always use less predicting time. As

we argued in proposition 1, predicting time is mainly related to the average tree height,

thus, we conclude that Incremental Tree’s height is larger than Adaptive Tree, which prove

the existence of Problem 3.

As for training time, the training time of the Adaptive method increases more steadily

with the increase of the epoch, while the Incremental method has a change in slope, which

probably means that the Incremental method will get worse with the increase of the epoch.

Figure 15: Contrast on Accuracy with Different Epochs

In terms of accuracy, it can be seen from the figure 15 that with the increase of epoch,

the accuracy of Incremental method increases gently. When epoch=50, it is overtaken by

Adaptive method. This points to the Incremental method we argued in Problem 1 that it

16

undermines accuracy by lowering the upper bounds for accuracy because words disappear

from its model.

Therefore, we could conclude that PIWA algorithm is more efficient than Incremental

method, which serves as an improvement.

6 Future Work

6.1 Adaptive Huffman Code With Buffer

• We just implemented the process of encode and analyzed its performance. The pro-

cess of decoder can be implemented in the future to make the Adaptive Huffman

Code With Buffer complete.

• The metrics can be defined more appropriate for the experiment for the Adaptive

Huffman Code With Buffer. If time permit, we can explore deeply in this aspect.

6.2 Modification of Partial Incremental Algorithm

• We haven’t combine the research on improving the performance of Adaptive Huffman

Tree with application scenario.

• Partial Incremental still has still a long way from Incremental Training. To truly

implement Incremental Training, we may have to modify the whole structure of the

hierarchical softmax model.

• Our implementation of Adaptive Huffman Tree should be further improved with

heap to cut down time complexity more.

7 Conclusion

In this paper, introduced by "the Bad Wine Pipeline", we described the basic process of a

high-level encode method "Adaptive Huffman Code" which permit the probability distri-

butions of words change.

Then in order to have a deeper understanding on this method, we made some exper-

iment using this method. We analyze its performance about the code in many aspect,

including compression rate, encoding time and decoding time. As the experiment showed,

17

the encode time and the decode time will increase rapidly once the size of message is

more than threshold 212. Combined with the compression rate, we concluded that the best

interval of the size of message is [27, 212].

After analyzing its performance about the code, we explored its learning velocity given

its adaptability. We defined a series of reasonable metrics to measure its earning velocity.

Using these metrics, we explore how the probability distribution affect its learning veloc-

ity.Finally, in order to improve its learning velocity, we proposed the Adaptive Huffman

Code with Buffer Method and our experiment verified its feasibility.

Finally, we attempt to apply Adaptive Huffman coding in a hierarchical softmax ap-

proach of the CBOW model. We first analyse the possible problems with the Incremental

Huffman Tree proposed by existing works, then we propose the PIWA algorithm incor-

porating Adaptive Huffman coding. Through experimental verification we find that our

method outperforms the Incremental Huffman algorithm, with higher accuracy, less pre-

dicting time and almost the same training time.

18

References

[1] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.

[2] D. E. Knuth, “Dynamic huffman coding,” Journal of Algorithms, vol. 6, no. 2, pp.

163–180, 1985. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/0196677485900367

[3] Z. Li, M. Drew, and J. Liu, Fundamentals of Multimedia, ser. Texts in

Computer Science. Springer International Publishing, 2014. [Online]. Available:

https://books.google.com.sg/books?id=R6vBBAAAQBAJ

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representa-

tions in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[5] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language model,” in

International workshop on artificial intelligence and statistics. PMLR, 2005, pp. 246–252.

[6] M. Nilufar and A. Abhari, “Incremental text clustering algorithm for cloud-based data

management in scientific research papers,” in 2022 Annual Modeling and Simulation Con-

ference (ANNSIM), 2022, pp. 778–789.

[7] L. Tian, X. Wen, Z. Song et al., “An online word vector generation method based on

incremental huffman tree merging,” Tehnički vjesnik, vol. 28, no. 1, pp. 52–57, 2021.

i

https://www.sciencedirect.com/science/article/pii/0196677485900367
https://www.sciencedirect.com/science/article/pii/0196677485900367
https://books.google.com.sg/books?id=R6vBBAAAQBAJ

Appendix

7.1 The Flow Diagram of Adaptive Huffman Tree Algorithm

The detailed procedure of Adaptive Huffman Tree Algorithm is as follows:

Figure 16: building and updating Adaptive Huffman Tree

7.2 Code Repository

All the codes are available in https://github.com/huskydoge/Exploration-on-Adaptive-

Huffman/tree/main

I

7.3 Dataset

The dataset we used is from, and we have included in

https://github.com/huskydoge/Exploration-on-Adaptive-Huffman.

7.4 Additional Experiment On Incremental Huffman Tree

Figure 17: Repeated Experiment On Incremental Huffman Tree

As we could see above, the trends reflected from the chart are consistent with those we

analyzed in the previous chart.

Figure 18: Incremental Training Accuracy with Different Epochs

From the chart above, we could see that the accuracy basically fluctuates around 50%

while increasing the number of epochs.

II

Figure 19: Condtions with more epochs

If we keep adding the epochs, we can observe that the accuracy rate on each incremental

dataset has trend of decreasing.

Here we choose epochs = 10,50,100,200,300,400,500,600,700,800,900,1000.

III

	Introduction
	Adaptive Huffman Code
	Basic Process

	Performance of Compression: Contrast
	The performance of Adaptive Huffman vs the performance of adaptive arithmetic
	Result Analyze and Conclusion

	Explore:"learning" convergence velocity
	The Metrics of the "learning" velocity
	The Affect Factor: The probability distribution
	Experiment
	Analyze

	Explore: Buffer sample
	Method
	Experiment and Result
	Analyze

	Partial Incremental: Application of ADA in CBOW Model
	Backgound
	Biased Walk on Huffman Tree
	A Further Look into Incremental Learning
	Previous Works
	Problems We Found

	Our Refinement: Partial Incremental With Adaptive Huffman Tree

	Future Work
	Adaptive Huffman Code With Buffer
	Modification of Partial Incremental Algorithm

	Conclusion
	The Flow Diagram of Adaptive Huffman Tree Algorithm
	Code Repository
	Dataset
	Additional Experiment On Incremental Huffman Tree

