

DCA-Bench: A Benchmark for Dataset Curation Agents

Benhao Huang¹, Yingzhuo Yu², Jin Huang³, Xingjian Zhang³, Jiaqi W. Ma²

¹Carnegie Mellon University, USA

³University of Michigan, USA

²University of Illinois Urbana-Champaign, USA

Motivations and Background

Real-World Examples of Issues in Dataset Repositories

Example 2 An issue example reported on BIG-Bench that involves a discrepancy between dataset files.

Title Miss aligned static information

Meta-Info

• ID: 80d6db6a-6cbf-4261-8d13-3244e7fb54fd

• Platform: BIG-Bench

• Issue Type: single-issue & multi-file

• Issue Tags: cross-file-discrepancy document-problem/wrong-info

• Source: https://github.com/google/BIG-bench/pull/498

Content

The stastic info in README.md is not aligned with the actual data file. There are 190 stories rather than 194 stories; 99 "Yes" rather than 100 "Yes"; 91 "No" rather than 94 "No".

Involved Files

1. name: task.json

- context: the number of datapoints in data files.

name: README.md

- context: We collected 194 stories from 30 papers published in the span of 1989 to 2021. Each story has a causal judgment question associated with it with a "Yes" or "No" answer. We carefully balanced the dataset -- there are 100 "Yes" answers (52%) and 94 "No" answers (48%). Each paper that we collected from has conducted rigorous human experiments. We follow a simple binarization strategy to reflect the majority of human agreement and use it as the ground truth to evaluate the AI model.

Example 3 An issue example which has a wrong target label that needs precise factual knowledge to discern

Title Error in 118th Congress data

Meta-Info

- ID: 51e12546-8bf3-473c-9ed6-f85d63c357ce
- Platform: FiveThirtyEight
- Issue Type: single-issue & multi-file
- Issue Tags: data-problem/hidden-corruption, data-problem/wrong-value
- Source: https://github.com/fivethirtyeight/data/issues/336

Content

The "congress-demographics" data includes Benjamin Eric Sasse as being a member of the 118th Congress but he resigned after the 117th.

Involved Files

- name: data_aging_congress.csv
- context: The "congress-demographics" data includes Benjamin Eric Sasse as being a member of the 118th Congress but he resigned after the 117th.
 - Confusing and risky when using the dataset
 - Non-trivial effort needed to detect

Example: Cross-file discrepancy — when documentation and data go out of sync

Example: Factual data corruption — requiring real-world knowledge to catch

Motivations and Background

• Today's Al agents have shown impressive capabilities across a wide range of **complex tasks**—such as coding, web navigation, and deep reasoning.

© Can we leverage AI agents to <u>detect hidden issues within existing dataset repositories</u>?

"Dataset Curator"

"Dataset Curation"

Related Works and Challenges

KELVIN WATERS * POSTED 2 YEARS AGO

Boston House Prices B feature is RACIST

B: 1000(Bk-0.63)2 where Bk is the proportion of blacks by town

No other race is featured in this dataset. Red-lining anyone?

Example 1 An issue example reported on Kaggle which involves racial bias

Title Boston House Prices B feature is RACIST

Meta-Info

- ID: 7e8f31cb-8c2a-4676-b3d4-941a64184a26
- Platform: Kaggle
- Issue Type: single-issue & multi-file
- Issue Tags: ethical-legal-risk document-problem
- Source: https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030

Content

B: 1000(Bk-0.63)2 where Bk is the proportion of blacks by town No other race is featured in this dataset. Red-lining anyone?

Involved Files

- name: datacard.md
- context: PTRATIO:pupil-teacher ratio by town 12. B: 1000(Bk-0.63)2 where Bk is the proportion of blacks by town 13. LSTAT:% lower status of the population

Example: Ethical Concerns. Rule-based scripts cannot discover this, while AI has the potential to detect such risks

Relevant work falls into a few categories

- Rule-based scripts for specific issues
- Model-based pipelines for data scoring or filtering
- Agent-based systems for software tasks

Analysis of the Task

- Rule-based scripts can only detect predefined and known patterns
- Our task focuses on detecting issues (Unknown), rather than fixing known issues.
- Detection is a prerequisite for any meaningful fix
- No clear ground truth, making supervision and evaluation difficult

Framing Our Research Question and Key Challenges

How well can Curators detect hidden issues in existing open dataset repositories?

♦ Challenge 1: Test Case Design

- Dataset issues are subtle, undocumented, and highly varied
- Need realistic, diverse, and manually verified test cases
- Requires human curation, verification, and domain knowledge

Challenge 2: Evaluation Protocol

- No standard ground truth for what counts as a correct detection
- Evaluation must be scalable and reliable:
 - Alignment with human experts
 - Minimal bias

These challenges motivate the design of DCA-Bench, a benchmark and evaluation framework for studying dataset-curation agents.

Introducing DCA-Bench

- 221 real-world curation cases
- 8 dataset platforms
- 4 issue categories
- 18 fine-grained tags

Statistic		Number
Sample-Level	#Samples	221
	Avg. #Files/Sample	2.13
	Avg. #Tokens/Sample	3.58×10^6
Type-Level	Single-Issue Single-File	61
	Single-Issue Multi-File	100
	Multi-Issue Single-File	14
	Multi-Issue Multi-File	46
Tag-Level	data-problem	197
	document-problem	83
	infrastructure-problem	19
	ethical/legal-risk	10
Category	Number Sub-category	Number

Category	Number	Sub-category	Number	
typo	18	_	_	
wrong-format	14	_	_	
inappropriate-file	4	_	_	
ethical/legal-risk	10	_	_	
internal-discrepancy	21	_	_	
cross-file-discrepancy	44	_	_	
data-problem	197	wrong-value missing-value 197 data-leakage apparent-corruption hidden-corruption		
document-problem	83	wrong-info insufficient-info	27 52	
infrastructure-problem	em 19 data-access script-code		4 15	

Multi-level Hints

h0: No hint provided. In this case, the Curator is required to detect the issue fully on its own.

h1: General description of the issue, without any specific details or hints on the location.

h2: Information about which files are involved in the issue, in addition to information from h1

h3: Partial contextual information about the issue, in addition to information from h2

Example 3 An issue example which has a wrong target label that needs precise factual knowledge to discern

Title Error in 118th Congress data

Meta-Info

- ID: 51e12546-8bf3-473c-9ed6-f85d63c357ce
- Platform: FiveThirtyEight
- Issue Type: single-issue & multi-file
- Issue Tags: data-problem/hidden-corruption, data-problem/wrong-value
- Source: https://github.com/fivethirtyeight/data/issues/336

Content

The "congress-demographics" data includes Benjamin Eric Sasse as being a member of the 118th Congress but he resigned after the 117th.

Involved Files

- name: data_aging_congress.csv
- context: The "congress-demographics" data includes Benjamin Eric Sasse as being a member of the 118th Congress but he resigned after the 117th.

Hints

 h_1 inaccurate data entry

 h_2 an inaccurate data entry in a CSV file

 h_3 an entry in 'data_aging_congress.csv' inaccurately includes a member as part of the 118th Congress

From a higher level hint, the Curator gains more information about the content and location of the issue.

Example: Multi-level hints of an issue which has a wrong target label that needs precise factual knowledge to discern

Evaluation Framework: Scalable & Trustworthy Judging via LLMs

We replace costly human grading with an **LLM evaluator** equipped with carefully <u>designed prompts</u> and <u>majority voting</u> strategies. Results on test cases demonstrate 95% alignment with human experts, confirming its reliability. Additionally, we conduct experiments to showcase its <u>minimal bias</u> (self-preference, length-bias) characteristics in our paper.

Evaluation Protocols of DCA-Bench

LLM Evaluator Agreement with Human Labels (%)

	Success Rate / %				
Model Name	Accuracy	Precision	Recall	F1 Score	κ Value
gpt-4o-2024-11-20	97.83	100.00	92.59	96.15	94.64
gpt-4-0125-preview	96.74	92.86	96.30	94.55	92.22
gpt-4o-2024-05-13	92.39	81.25	96.30	88.14	82.59
DeepSeek-R1	92.39	81.25	96.30	88.14	82.59
DeepSeek-V3	93.48	88.89	88.89	88.89	84.27
gpt-3.5-turbo	68.48	48.21	100.00	65.06	42.15
Meta-Llama-3-70B-Instruct	69.57	49.09	100.00	65.85	43.68
Meta-Llama-3.3-70B-Instruct	88.04	72.22	96.30	82.54	73.73
o3-mini-2025-01-31	91.30	100.00	70.37	82.61	77.04

Benchmark Results

	Success Rate / %				
Model Name	$\mid h_0 \mid$	h_1	$\mid h_2 \mid$	h_3	Avg.
w/o Knowledge RAG					
DeepSeek-R1	29.86	52.04	52.04	73.30	51.81
DeepSeek-V3	15.84	39.82	39.82	76.02	42.87
GPT-4-0125-preview	10.86	27.15	34.84	67.42	35.07
GPT-4o-2024-11-20	20.36	41.63	47.51	76.02	46.38
w/ Knowledge RAG					
DeepSeek-R1	29.41	45.25	56.11	78.28	52.26
DeepSeek-V3	12.22	38.91	42.99	75.57	42.42

- Even some of the most advanced models uncover barely 30% of issues without hints. With highest level of hints, none exceed 80%.
- Interestingly, we found the usage of RAG doesn't guarantee a boost in the performance in this task.

Limitations

- Limited Coverage
 - Our test cases represent only a portion of real-world dataset issues
- Unlabeled Issues
 - Some problems in test cases may remain undetected
- Text-Only Benchmark
 - Currently excludes multimodal datasets (e.g., image/audio)

Future Works

- Develop stronger and more autonomous curator agents
- Extend DCA-Bench to multimodal datasets
- Create realistic simulation environments for agent training & evaluation

Conclusion

- We introduce DCA-Bench: a benchmark for testing dataset-curation agents
- Built from 221 real-world data quality issues with 4 hint levels across 8 open platforms
- Tasks focus on issue detection, not fixes to known issues with clear target
- LLM-based Evaluator enables scalable and reliable performance assessment
- Benchmark results show: current models have potential, but great improvement remains to be made.

Thanks for Listening

Code

Paper

Dataset

